摘要:作为结构材料, 陶瓷具有耐高温能力强、抗氧化能力强、硬度大、耐化学腐蚀等优点,缺点是呈现脆性,不能承受剧烈的机械冲击和热冲击,因而严重影响了它的实际应用.为此,人们通过采用连续纤维增韧方法改进其特性,进而研发出连续纤维增强陶瓷基复合材料。该种材料采用碳或陶瓷等纤维进行增强,使陶瓷基体在断裂过程中发生裂纹偏转,纤维断裂和纤维拔出等的同时,吸收能量,既增强了强度和韧性,又保持了良好的高温性能。
本文主要是综述了陶瓷基连续纤维增强复合材料的制备方法,并分析了各种工艺的优缺点。在总结了现阶段连续纤维增强复合材料研究中存在的问题的基础上,提出了今后连续纤维增强复合材料的主要研究方向。
科学技术的发展对材料提出了越来越高的要求,陶瓷基复合材料由于在破坏过程中表现出非脆性断裂特性,具有高可靠性,在新能源、国防军工、航空航天、交通运输等领域具有广阔的应用前景。
陶瓷基复合材料(Ceramic matrix composite,CMC)是在陶瓷基体中引入第二相材料,使之增强、增韧的多相材料,又称为多相复合陶瓷 (Multiphase composite ceramic)或复相陶瓷(Diphase ceramic)。陶瓷基复合材料是2O世纪8O年代逐渐发展起来的新型陶瓷材料,包括纤维(或晶须)增韧(或增强)陶瓷基复合材料、异相颗粒弥散强化复相陶瓷、原位生长陶瓷复合材料、梯度功能复合陶瓷及纳米陶瓷复合材料。其因具有耐高温、耐磨、抗高温蠕变、热导率低、热膨胀系数低、耐化学腐蚀、强度高、硬度大及介电、透波等特点,在有机材料基和金属材料基不能满足性能要求的工况下可以得到广泛应用,成为理想的高温结构材料【1】。
连续纤维增强复合材料(Continuous fiber reinforcedcomposites)是以连续长纤维为增强材料,金属、陶瓷等为基体材料制备而成。金属基复合材料是以陶瓷等为增强材料,金属、轻合金等为基体材料而制备的。从20世纪60年代起各国都相继对金属基复合材料开展了大量的研究,因其具有高比强度、高比模量和低热膨胀系数等特点而被应用于航天航空及汽车工业。陶瓷材料具有熔点高、密度低、耐腐蚀、抗氧化和抗烧蚀等优异性能,被广泛用于航天航空、军事工业等特殊领域。但是陶瓷材料的脆性大、塑韧性差导致了其在使用过程中可靠性差,制约了它的应用范围。而纤维增强陶瓷基复合材料方面克服了陶瓷材料脆性断裂的缺点,另一方面保持了陶瓷本身的优点[2]。
碳化硅作为一种具有优良特性的常用陶瓷材料,其高温强度及抗热震性能良好,密度低、硬度高、耐磨损、热膨胀系数低及导热性好。但是,断裂韧性低在一定程度上限制了该材料作为高温承力构件使用。向陶瓷材料中引入连续纤维增强体是提高材料断裂韧性最有效的方法之一。因此,纤维及其织物增强技术受到复合材料研究者的青睐[3]。
陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。
陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。其最高使用温度主要取决于基体特征。陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。
虽然用于纤维增强陶瓷基复合材料的纤维种类较多.但迄今为止,能够真正实用的纤维种类并不多一现简要介绍如下:
第一类为氧化铝系列(包括莫来石)纤维一这类纤维的高温抗氧化性能优良,有可能用于14000C以上的高温环境.但目前作为FRCMCs的增强材料主要存在以下两个问题:一是高温下晶体相变、晶粒粗化以及玻璃相的蠕变导致纤维的高温强度下降;二是在高温成型和使用过程中,氧化物纤维易与陶瓷基体(尤其足氧化物陶瓷)形成强结合的界面,导致FRCMCs的脆性破坏,丧失了纤维的补强增韧作用。
第二类为碳化硅系列纤维 目前制备碳化硅纤维的方法主要有两种:一足化学气相沉积法(CVD): 用这种方法制备的碳化硅纤维,其高温性能好,但由于直径太大(大于100um),不利于制备形状复杂的FRCMCs构件,且价格昂贵,因而其应用受到很大限制。二足有机聚合物先驱体转化法。在这种方法制备的纤维中,最典型的例子是日本碳公司生产的Nicalon和Tyranno等纤维。这种纤维的共同特点是,纤维中不同程度地含有氧和游离碳杂质,从而影响纤维的高温性能。最近,H本碳公司生产的低含氧量碳化硅纤维(Hi.Nicalon)具有较好的高温稳定性,其强度在1500~1600℃温度下变化不大。
第三类为氮化硅系列纤维。它们实际卜是由Si、N、C和0等组成的复相陶瓷纤维,现已有商品出售。这类纤维也是通过有机聚合物先驱体转化法制备的,日前也存存着与先驱体碳化硅纤维同样的问题,因而其性能与先驱体碳化硅纤维相近。
第四类为碳纤维。碳纤维已有三十余年的发展历史,它是目前开发得最成熟,性能最好的纤维之一,已被广泛用作复合材料的增强材料。其高温性能非常好,在惰性气氛中,2000~C温度范围内其强度基本不下降,是目前增强纤维中高温性能最佳的一类纤维。然而,高温抗氧化性能差是其最大的弱点。空气中,温度高于360℃ 后即出现明显的氧化失重和强度下降,如能解决这个问题(如采用纤维表面涂层等方法),碳纤维仍小失为FRCMCs的最佳侯选材料[4]。
陶瓷材料是一种本质脆性材料,在制备、机械加工以及使用过程中,容易产生一些内在和外在缺陷,从而导致陶瓷材料灾难性破坏,严重限制了陶瓷材料应用的广度和深度,因此提高陶瓷材料的韧性成为影响陶瓷材料在高技术领域中应用的关键。
近年来,受自然界高性能生物材料的启发,材料界提出了模仿生物材料结构制备高韧性陶瓷材料的思路。1990年Clegg等创造性材料制备的Sic薄片与石墨片层交替叠层结构复合材料与常规SiC陶瓷材料相比,其断裂韧性和断裂功提高了几倍甚至几十倍,成功地实现了仿贝壳珍珠层的宏观结构增韧。
国内外科研人员在陶瓷基层状复合材料力学性能方面进行了大量的试验研究,取得了很大进展。
陶瓷基层状复合材料力学性能优劣关键在于界面层材料,能够应用在高温环境下,抗氧化的界面层材料还有待进一步开发;此外,在应用C、BN等弱力学性能的材料作为界面层时,虽然能够得到综合性能优异的层状复合材料,但是基体层与界面层之间结合强度低的问题也有待进一步解决。
陶瓷基层状复合材料的制备工艺具有简便易行、易于推广、周期短而廉价的优点,可以应用于制备大的或形状复杂的陶瓷部件。这种层状结构还能够与其它增韧机制相结合,形成不同尺度多级增韧机制协同作用,实现了简单成分多重结构复合,从本质上突破了复杂成分简单复合的旧思路。这种新的工艺思路是对陶瓷基复合材料制备工艺的重大突破,将为陶瓷基复合材料的应用开辟广阔前景。
我国从20世纪70年代初期开始碳纤维增强陶瓷基的研究,由于碳纤维增强石英复合材料中,两相在化学上相容性好,而且在物理上匹配也适当,因而取得很好的增强增韧效果 C/SiC在化学相容和物理上的匹配都不甚理想,这种复合材料虽然在任性上得到改进,但在增强上并没有什么显著效果,这~材料已经在我国的空间技术上得到应用。在碳纤维增强氮化硅复合材料的研究中发现:碳纤维与氮化硅的两相组合在化学上相容和物理上的匹配不甚理想。尽管可以通过低温烧结的途径来改善其化学相容性,通过ZrO2, 的相变来缓和由于热膨胀不匹配而引起的应力,但是两相之间弹性模量的不匹配所产生的影响仍然无法消除。因此,这种复合材料虽然在韧性上可以得到改进,但在增强上并没有什么显著效果。碳化硅纤维增强锂铝硅(gAS)复合材料也是一种比较符合前述原则的复合系统,它在1200℃以下不失为一种好的高温结构材料。由于LAS微晶玻璃可以通过添加MgO调整其热膨胀系数,使之与碳化硅纤维得到更佳的匹配。碳纤维/LAS复合材料具有高达20,1MPa.m的断裂韧性。我国采用气相合成或以氧化硅为原料的碳还原法制造SiC晶须,所制各的SiC晶须双^ 复合材料有极好的高温强度和断裂任性,在1370℃分别为880MPa和8.5MPa.m,且表现出低的残余应力和高的抗蠕变性能.国际在2O世纪9O年代,CMCSiC开始步入应用研究阶段.作为高推重比航空发动机用高温热结构材料,以推重比10航空发动机为演示验证平台对喷管,燃烧室和涡轮三大部分进行了大量考核,历时十余年目前仍在进行.其中法国Snecma公司生产的CMC—SiC调节片、密封片已装机使用近1O年 在700℃工作lOOh,减重50%,疲劳寿命优于高温合金, 目前正向其他发动机上拓展.中期(2015~2020年),发展燃烧室和内衬、低压涡轮和导向叶片;远期(2020年以后), 发展高压涡轮和导向叶片,高压压气机涡轮和导向叶片。
目前用来制备发动机构件的CMC-SiC纤维主要是碳纤维和SiC纤维。根据制备原料的不同,碳纤维可以分为粘胶基碳纤维、PAN基碳纤维和沥青基碳纤维。PAN基碳纤维主要是高强度型;沥青基碳纤维主要是高模量型,也有高强和高模兼具型。
在纤维用于制备航空发动机构件的选型上,美国做了较为广泛的研究。1994年,NASA的EPM项耳(Enabling Propulsion Materials)选择SiCf/sic作为HSCT(high speed civil transport)发展的最佳材料系统,并开始进行纤维、纤维涂层和基体组成的选择和研究。作为高比冲液体火箭发动机用材料,多种卫星姿控轨控发动机喷管和大型运载火箭发动机喷管扩张段通过了试车考核。美国Hyper—Therm MTC,Inc.公司和空军实验室采用CVI技术制备的c/sic复合材料液体火箭发动机推力室。此推力室长457mm,喷管出口直径为254mm,喉部直径为35mm。目前已通过工作条件为月2(g)/ (1)推进剂、燃气温度2050~C、燃烧室压力4.1MPa,推力1735.2N的热试车考核。
美国空军超音速技术计划在模拟Mach8巡航导弹工作环境中测试了多种用于超燃冲压发动机尾喷管, 燃烧室侧壁和进气道唇口,侧壁复合材料的性能 结果表明, 带有抗氧化涂层的C/SiC复合材料能经受住lOmin的模拟环境考核,可用作一次性使用巡航导弹超燃冲压发动机中的进气道材料,并有希望用于温度高1940~的燃烧室和喷管。针对大于Mach8飞行和长期工作,美法共同发起一项为期4年的研究计划,设计了带有冷却结构的c/sic复合材料夹层结构,分为3层:面向高温气流的最内层为C/SiC复合材料,中问层为镍合金冷却管,最外层也为C/SiC复合材料。这种结构的缩比件通过了模拟超燃冲压发动机燃烧室工作环境的考核[5]。
迄今为止,研究得最多的是Cf/SiC和Si Cf/SiC等体系的陶瓷基复合材料,这些复合材料主要用于航空航天发动机结构件 、原子反应堆壁 等。法国在这方面的研究处于世界领先地位,如用Si Cf/SiC和Cf/SiC复合材料制成的喷嘴和尾气调节片已用于Mirage 2000战斗机的M53发动机和Rafale战斗机的M88航空发动机上。现在,Cf/SiC复合材料在航空航天领域的应用主要有 :(1)用来制作抗烧蚀表面隔热板。在航天领域,当飞行器进入大气层后,由于摩擦产牛的大量热量,将导致飞行器受到严重的烧蚀,为了减小飞行器的这种烧蚀,需要一个有效的防热体系。图1为复杂形状的Cf /SiC复合材料隔热片;(2)用作可重复使用的热结合材料。这种构件有导弹的鼻锥、导翼,机翼和盖板等。图2为用Cf /SiC复合材料制作的飞机导翼;(3)用来制作涡轮发动机的喷管。用Cf /SiC复合材料制造涡轮发动机的一些构件可以提高发动机的燃烧温瞍从而提高了涡轮机的效率,同时,由于Cf /SiC复合材料的暂度远低于高温合金的密度,可以大大减轻发动机的重鼙.挺高发动机的工作效率与可靠性。图3为用Cf/Si C复合材料制作的涡轮发动机喷管[4]。
作为结构材料, 陶瓷具有耐高温能力强、抗氧化能力强、硬度大、耐化学腐蚀等优点,缺点是呈现脆性,不能承受剧烈的机械冲击和热冲击,因而严重影响了它的实际应用.为此,人们通过采用连续纤维增韧方法改进其特性,进而研发出连续纤维增强陶瓷基复合材料。该种材料采用碳或陶瓷等纤维进行增强,使陶瓷基体在断裂过程中发生裂纹偏转,纤维断裂和纤维拔出等的同时,吸收能量,既增强了强度和韧性,又保持了良好的高温性能。
本文主要是综述了陶瓷基连续纤维增强复合材料的制备方法,并分析了各种工艺的优缺点。在总结了现阶段连续纤维增强复合材料研究中存在的问题的基础上,提出了今后连续纤维增强复合材料的主要研究方向。
料浆浸渍和热压烧结法的基本原理是将具有可烧结性的基体原料粉末与连续纤维用浸渍工艺制成坯件,然后高温下加压烧结,使基体材料与纤维结合成复合材料 。工艺流程图如图4所示。
料浆浸渍是指让纤维通过盛有料浆的容器浸挂料浆后缠绕在卷简上,烘干,沿卷简母线切断,取下后得到无纬布,将无纬布剪裁成一定规格的条带或片,在模具中叠排,即成为预成型坯件。经高温去胶和烧结得到复合材料制件。热压烧结应按预定规律(即热压制度)升温和加压。热压过程中,最初阶段是高温去胶,随粘结剂挥发、逸出,将发生基体颗粒重新分布、烧结和在外压作用下的粘性流动等过程,最终获得致密化的复合材料。此种工艺己用于制备以玻璃相为基体的复合材料。
直接氧化沉积法(Direct oxidating deposition process,又称LANXIDE)最早被用于制备A12O3/A1复合材料,后推广用于制备连续纤维增强氧化物陶瓷基复合材料。LANXIDE法工艺原理为:将连续纤维预成型坯件置于熔融金属上面,因毛细管作用,熔融金属向预成型体中渗透。由于熔融金属中含有少量添加剂,并处于空气或氧化气氛中,浸渍到纤维预成型体中的熔融金属与气相氧化剂反应形成氧化物基体,产生的氧化物沉积在纤维周围,形成含有少量残余金属的、致密的连续纤维增强陶瓷基复合材料。此种方法适用于制备以氧化铝为基体的陶瓷基复合材料,如SiC/A1203,在1200~C的抗弯强度为350MPa,断裂韧性为18 MPa·m1/2” ,室温时的抗弯强度为450 MPa,断裂韧性为21 M Pa·m1/2 。
直接氧化沉积法工艺优点是:对增强体几乎无损伤,所制得的陶瓷基复合材料中纤维分布均匀;在制备过程中不存在收缩,因而复合材料制件的尺寸精确;工艺简单,生产效率较高,成本低,所制备的复合材料具有高比强度,良好韧性及耐高温等特性。
溶胶一凝胶法(Sol—ge1)是用有机先驱体制成的溶胶浸渍纤维预制体,然后水解、缩聚,形成凝胶,凝胶经干燥和热解后形成复合材料。此工艺组分纯度高,分散性好,而且热解温度不高(低于1400~C),溶胶易于润湿纤维,因此更利于制备连续纤维增强陶瓷基复合材料。该工艺缺点是:由于是用醇盐水解来制得基体,所以复合材料的致密性差,不经过多次浸渍很难达到致密化,且此工艺不适于部分非氧化物陶瓷基复合材料的制备。
化学气相法主要包括化学气相沉积法(CVD)、化学气相渗透法(CVI)等。最常用的复合材料制备方法是CVI法,它是在CVD法基础上发展起来的。该制备方法是将纤维预制体置于密闭的反应室内,采用气相渗透的方法,使气相物质在加热的纤维表面或附近产生化学反应,并在纤维预制体中沉积,从而形成致密的复合材料。
该技术的主要优点是:(1)由于是在低于基体熔点的温度下制备合成陶瓷基体材料,避免了纤维与基体材料的高温化学反应,制备过程中对纤维损伤小,材料内部的残余应力小。(2)通过改变工艺条件,能制备多种陶瓷材料,有利于材料的优化设计和多功能化。(3)能制备形状复杂、近净尺寸和纤维体积分数大的复合材料。主要缺点是:生产周期长,设备复杂,制备成本高;制成品孔隙率大,材料致密度低,从而影响复合材料的性能;不适于制备厚壁部件[2]。
先驱体转化法又称聚合法浸渍裂解法(PIP法)或先驱体裂解法,是近年来发展迅速的一种FRCMCs制备工艺。与溶胶一凝胶法一样,先驱体转化法也是利用有机先驱体在高温下裂解而转化为无机陶瓷基体的一种方法。溶胶.凝胶法主要是用于氧化物陶瓷基复合材料,而先驱体转化法主要用于非氧化物陶瓷,目前主要以碳化物和氮化物为主。
这种方法的主要特点是:(1)在单一的聚合物和多相的聚合物中浸渍,能得到组成均匀的单向或多相陶瓷基体,具有比CVI法更高的陶瓷转化率;(2)预制件中没有基体粉末.因而纤维不会受到机械损伤;(3)裂解温度较低(小于1300℃),无压烧成,因而可减轻纤维的损伤和纤维与基体间的化学反应:(4)可以对先驱体进行分子设计,制备所期的 相或多相陶瓷基体,杂质元素容易控制;(5)充分利用聚合物基和C/C复合材料的成型技术,可仿形制造出形状复杂的FRCMCs异型件。该法的主要缺点在于:(1)致密周期较长,制品的孔隙率较高;(2)基体密度在裂解前后相差很大,致使基体的体积收缩很大(可达50~70% )。由于增强材料的骨架牵制着基体的体积收缩,因而在基体内部容易产生裂纹和气孑L,破坏了复合材料的整体性,并最终影响复合材料的性能[4]。
连续纤维增强复合材料因其优异的性能得到广泛的应用,但是纤维增强复合材料的研究还处于起步阶段,所有已经开发应用的制备技术都存在着各自的问题,普遍存在的问题有以下几点。
(1)制备工艺复杂,很难应用于连续生产。
(2)金属基体与增强体润湿问题也给复合材料的制备带来很大的难题。
(3)金属基复合材料的制备需要在较高温度下进行,所以基体与增强体之问不可避免地会发生不同程度的界面反应。界面反应促进了增强体与基体的润湿,是对制备有利的因素,但是反应生成的脆性相反而会影响复合材料的性能。
综上所述,金属基复合材料的制备领域的研究要在改进制备设备、降低制备成本、改善基体与增强体的润湿性、控制制备过程中的界面反应等几个方面开展。
陶瓷基复合材料的制备也存在着很多问题。在高温、高压下制备出的复合材料虽然可以保证材料的致密性,但同时也对纤维造成一定的损伤;降低制备温度,低压下制备复合材料,使得基体孔隙率高,严重影响复合材料的性能。因此,发展新的连续纤维增强复合材料的制备工艺是实现大规模生产的当务之急,也是今后连续纤维增强复合材料研究的主要方向,随着研究的不断深入,高性能复合材料的不断创新,连续纤维增强复合材料的应用将会更加广阔。